Solar cell

From Wikipedia, the free encyclopedia For convection cells on the sun's surface, see Granule (solar physics).

See also: Photovoltaics A conventional crystalline silicon solar cell (as of 2005). Electrical contacts made from busbars (the larger silver-colored strips) and fingers (the smaller ones) are printed on the silicon wafer. A solar cell, or photovoltaic cell (previously termed "solar battery"[1]), is an electrical device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical and chemical phenomenon.[2] It is a form of photoelectric cell, defined as a device whose electrical characteristics, such as current, voltage, or resistance, vary when exposed to light. Solar cells are the building blocks of photovoltaic modules, otherwise known as solar panels. Solar cells are described as being photovoltaic irrespective of whether the source is sunlight or an artificial light. They are used as a photodetector (for example infrared detectors), detecting light or other electromagnetic radiation near the visible range, or measuring light intensity. source https://en.wikipedia.org/wiki/Solar_cell

The operation of a photovoltaic (PV) cell requires 3 basic attributes: The absorption of light, generating either electron-hole pairs or excitons. The separation of charge carriers of opposite types. The separate extraction of those carriers to an external circuit.

In contrast, a solar thermal collector supplies heat by absorbing sunlight, for the purpose of either direct heating or indirect electrical power generation from heat. A "photoelectrolytic cell" (photoelectrochemical cell), on the other hand, refers either to a type of photovoltaic cell (like that developed by Edmond Becquerel and modern dye-sensitized solar cells), or to a device that splits water directly into hydrogen and oxygen using only solar illumination.

https://en.wikipedia.org/wiki/Solar_cell